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1.0 Introduction

Direct manipulation Graphical User Interfaces
(GUI) have become the predominant paradigm
for human computer interfacing in the 1990's.
The commercial successes of personal com-
puter systems using direct manipulation such

as Windows 3.1 ™, the MacOs '™ and X Win-
dows System have shown that such approaches
to interaction are extremely effective and pop-
ular with users. Direct manipulation systems
exploit intuitive common sense skills that are
developed throughout the life of the individual
by transferring them to operate on semantic
task representations in a natural and transpar-
ent way. This allows individuals to utilize fre-
guently used and highly developed skills such
as those involved in manipulating real physical
objects (e.g., the desktop metaphor) to learn to
manipulate semantic task representations eas-
ily and with few syntactic constraints. The user
can concentrate on task solutions, rather than
expend cognitive effort in maintaining repre-
sentations of the computer’s structures and
processes and syntactic rules for forming com-
mands. Direct manipulation GUIs have been
shown to reduce learning time, error rates and
to increase skill retention and subject satisfac-
tion of users [Shneiderman, 1992].

Trandating the direct manipulation metaphor
into a 3-D domain reveals a new set of prob-
lems, especially for users with physical dis-
abilities. While direct manipulation of
graphical computer interfaces is now within
the reach of many users with motor disabilities

(e.g., the headmouse ™ head movement con-
trolled mouse, single switch control, voice rec-

ognition), a corresponding ability to carry out
real direct manipulation on physical objectsin
their environment is lacking due to avariety of
factors (e.g., spinal cord injuries, Multiple
Sclerosis etc.). The physica limitations of
motion range, coordination of movement and
grasping, and lack of strength al contribute to
a decreased ability to perform normal manual
tasks. Fortunately, in principle, this loss may
be compensated for by the use of assistive
robots which may act on the user’s behalf in
carrying out the direct manipulation.

The Multimodal User Supervised Interface and
Intelligent Control (MUSIIC) project is work-
ing towards developing an assistive robot sys-
tem that applies the direct manipulation
metaphor by using a multimodal (speech and
gesture) interface to allow people with disabil-
ities to manipulate real world 3-D objects
[Chen etal., 1994, Kazi etal. 1995b, Kazi
eta., 1995a, Betler etal., 1995b, Beitler
et al., 1995q].

Our research involves a method and system
which integrates human-computer interaction
with reactive planning to operate a telerobot
for use as an assistive device. The MUSIIC
strategy is a novel approach for an intelligent
assistive telerobotic system: speech-deictic
gesture control integrated with a knowledge-
driven reactive planner and a stereo-vision sys-
tem. The system is intended to meet the needs
of individuals with physical disabilities and
operate in an unstructured environment, rather
than in a structured workcell allowing the user
considerable freedom and flexibility in terms
of control and operating ease. The strategy uti-
lizes a stereo-vision system to determine the



three-dimensional shape and pose of objects
and surfaces which are in the immediate envi-
ronment, and provides an object-oriented
knowledge base and planning system which
superimposes information about common
objects in the three-dimensiona world. This
approach alows the user to identify objects
and tasks via a multimodal user interface
which interprets their deictic gestures and
speech inputs. The multimodal interface per-
forms a critical disambiguation function by
binding the spoken words to a locus in the
physical work space. The spoken input is also
used to supplant the need for general purpose
object recognition. Instead, three-dimensional
shape information is augmented by the user’s
spoken word which may also invoke the appro-
priate inheritance of object properties using the
adopted hierarchical object-oriented represen-
tation scheme. To understand the intricacies

and embodied meaning of the numerous modal
inputs, we have also designed a graphical sm-
ulation of the multimoda environment. This
simulation will allow us to study and better
understand the interplay between the user and
the MUSIIC system. Additionally, the simu-
lated environment will be an integral part of
the actual MUSIIC system by providing the
user avisualization which depicts the planner’s
interpretation of the information gathered by
the system. The MUSIIC system’s ability to
determine the superquadric shape representa-
tion of the scene from stereo vision enables the
graphical simulation to dynamicaly model a
variety of real world entities and objects.

A very simple illustration (Figure 1) describes
how our proposed system functions in a real-
world scenario.

Figure 1

The user approaches atable on which there are
a pen and a box The user points to the pen, and
says, pen. The user points to the box and says
put it there, indicating that the pen must be
moved to the location there. The system then
executes the user intentions.

1.1 Justification

A multimodal interface falls between two tech-
nical solutions - master/slave telemanipulation

and autonomous robots. The former places sig-
nificant physical demands on the user, the lat-
ter requires extreme structure in the world
coupled with unrealized machine intelligence.
A multimodal interface would allow the user to
remain in the loop, while lessening the physi-
cal demands.

1.1.1 Towardsadirect manipulation RUI
(Robot User Interface) for three-dimension-



al unstructured environments

Traditional systems have used command line
interfaces with voice-recognition to allow the
user to instruct the robot on what actions are
desired. Thisis a situation reminiscent of early
user interfaces which alow dialogue through a
syntax constrained command line interface. In
the direct manipulation robot interface, the
user concentrates on the task semantic repre-
sentation and direct manipulation of physica
objects, rather than the internal representation
of the robot and computer controller. People
without disabilities can easily identify, manip-
ulate and transport objects while taking the
environmental context into account because
we have exceptional sensorimotor abilities.
Employing a direct manipulation approach to
the control of an assistive robot brings with it
similar advantages to those available with
direct manipulation two-dimensional GUI's
where manipulation acts can be linked to pro-
cesses internal to the computer or system being
controlled. Certainly, a system that by-passes a
fatigue inducing command line interface to an
assistive robot and permits a natural human-
task dialogue would be highly advantageous,
considering that an assistive robot will have to
be used almost constantly if it is to be cost-
effective and worthwhile to the user.

Implementing a two-dimensional  direct
manipulation GUI can be a relatively compli-
cated endeavor, but is significantly easier than
a RUI which operates on physical objects
located in the real unstructured three-dimen-
sional world around the individual with dis-
abilities. Object oriented development
environments for two-dimensional GUIs
abound, where screen controls (e.g. sliders and
radio buttons) can be instantiated and carry
with them associated interaction methods and
responses to user input. In these development
environments, the location and identity of all
screen objects are known to the window man-
ager and there is no ambiguity in sending

events to the different screen objects. In a
three-dimensional direct manipulation inter-
face for unstructured environments, rather than
having screen objects which are cursor addres-
sable using a mouse, the user points to physi-
cal objects in the world via gesture, and
specifies that certain manipulatory actions be
performed on the objects. Analogous to screen
objects, real objects have semantics and meth-
ods associated with them that define their
shape, functions, size and alowable actions
that can be performed on then, as well as
requiring what the expected outcome of the
actions will be. However, in order to operate
the system must have the ability to quickly and
reliably identify the objects and their position
and orientation in the environment.

Enabling the computer and robot to be aware
of the identity and pose of a physical object so
that direct manipulation may be carried out by
the robot system introduces significant percep-
tual and motor bottlenecks. The computer's
internal representation of the domain must be
updated with respect to the physical objects
identity, shape, pose and location, as well as
any constraints that might be associated with
the manipulation of that particular object.
These attributes are not immediately accessi-
ble as they are in the case of a window man-
ager with screen objects and associated data
structures through which they can be rapidly
indexed. In principle, a highly reliable and
rapid machine vison system would provide
the necessary recognition and pose determina-
tion for objects, but thisis currently far beyond
the state of the art and even if it were, might
involve significant costs in terms of processing
time and system compl exity.

Furthermore, actions specified by the user,
such as the equivalent of dragging a screen
object, would require grasping and transporta-
tion of real objects. Each of these processesis
influenced by the world state, while in the case
of a screen representation, such processes tend



to be context independent. A human invokes
highly sophisticated path planning abilities
when planning trajectories for objects. Much
work has been done in trgjectory planning and
plan synthesis in the robotics and Al planning
communities, but practical, rapid and highly
autonomous systems are still along way from
practical reality.

One approach towards mitigating the require-
ments for perceptual and planning systems to
support a direct manipulation system is to uti-
lize a multimodal interface to combine input
evidence from a user dialogue. This permits
perceptual and planning requirements of the
system to be relaxed to the point where exist-
ing semi-autonomous techniques are sufficient
to carry out tasks and make the system practi-
cal. By engaging in dialogue with the user in
such a way that natural deictic gestures and
voice input can be used to carry out a task, the
system gains many of the advantages present
in direct manipulation interfaces. The user can
directly designate objects and locations in the
environment around him/her, and use natural
language to describe the desired actions on
those objects and locations. By combining dif-
ferent modalities, rather than attempting to
constrain dialogue to one modality, great sim-
plification of processing can be accomplished,
as has been demonstrated by several multimo-
da systems that have been developed for
graphical user interfaces [Koons, 1994,
Bolt, 1980]. This simplified processing allows
for less delay in the processing of user interac-
tion, which supports faster system response to
user actions, that has been demonstrated to
improve user task completion times and to
result in less frustration [ Shneiderman, 1992].

1.1.2 Supervisory control paradigm

A point of departure for our project is the
supervisory control paradigm which is defined
by Ferrel and Sheridan as a “control system
where one or more human operators are inter-

mittently programming and continually receiv-
ing information from a computer that itself
closes an autonomous control loop through
artificial end effectors and sensors to the con-
trolled process or task environment”
[Sheridan, 1992, Ferrel & Sheridan, 1967].
This alows the system to blend the flexible
decision making and error-handling abilities of
the human with the pre-programmed autono-
mous sub-goal satisfying ability of the
machine, while still being monitored by a
human operator.

A teleoperator is a machine (e.g., arobot) that
projects an operator’s sensing and manipula
tion capabilities to a location remote from that
person. Types of teleoperated systems may be
broadly categorized into those using continu-
ous control by the operator and those telero-
bots in which the human operator supervises
the robot through a computer intermediary
using an intermittent form of control. In other
words, telerobotics is supervisory control of a
teleoperator. Interfaces for intermittent super-
visory control have taken on a variety of
forms. However, many existing supervisory
control systems have not used direct manipula-
tions approaches; instead they rely on com-
mand-line type interfaces and requiring fairly
good knowledge of the syntax and semantics
of robot programming languages to set up
tasks, which makes them difficult to use for
people with little robotics experience.

1.1.3 Background work in supervisory and
telemanipulatory control

Brooks developed an early and effective
object-centered interface for supervisory con-
trol [Brooks, 1979]. His SUPERMAN (super-
visory manua control) system provided for
analogic continuous control of a telerobot as
well as symbolic level identification of particu-
lar objects via keyboard input. The operator
would carry out a specific set of operations on
a given object. The manipulations would be



stored relative to an object-centered coordinate
frame in the form of a macro defined with
respect to that object (which was given a sym-
bolic name via keyboard input). Thus, the
operator would train the system by identifying
objects and providing manipulatory macros for
subsequent execution relative to a new instan-
tiation of asimilar (or identical) object in adif-
ferent location. The identification of objects
and description of pose was done by the opera-
tor, which in turn invoked the appropriate
manipulatory macro in that object's pose coor-
dinate frame. The system was highly success-
ful; empirical evaluations showed that
operators generally experienced quicker com-
pletion times and fewer errors than complete
continuous control without the benefits of
supervisory control. Thus, this system demon-
strated that the perceptual and reasoning abili-
ties of a non-disabled operator could be
effectively married with the semi-autonomous
activities of the robot control system.

Schneider developed a “select and drag” inter-
face for atelerobot in a planar task [ Schneider
& Cannon, 1989]. The interface allowed the
operator to use a mouse to select an object to
be transported by clicking on it, and then drag-
ging the selected object to the desired location
to provide for the selection of the destination
location.

Cannon has developed “point and direct” inter-
faces for supervisory control of robots. Can-
non [Cannon, 1992] used a three-dimensional
point designation system for specifying posi-
tions and locations in a workspace by the
alignment of two reticles from two camera
views of the remote scene. The system sup-
ports a “put that there” level of syntax for
binding objects and locations to actions. Sub-
sequently Cannon has developed an aug-
mented reality system to superimpose tool
renderings on live video images of the remote
scene [Cannon et al., 1994]. The virtual tools
are guided through the use of a three-dimen-

sional tracker and glove interface.

Funda et al have developed ateleprogramming
paradigm for telemanipulation where a priori
information about the task scene is used to
generate a virtual environment with graphical
and force feedback [Funda et al., 1992]. In the
environment the user can directly manipulate
three-dimensional  graphical objects. The
actions of the operator are parsed into sym-
bolic actions on specific objects which are then
transmitted to a remote site where registration
between the virtual and real-environment takes
place and the guarded actions are executed on
the corresponding real objects. However,
implementation of such a system requires sig-
nificant overhead since scene models must be
constructed each time the task scene changes
and new objects appear.

Similarly, if the work place of the users is
highly structured and static, then the system
may be assured that given locations have given
objects with given attributes, and indexing of
object pose shape and size may be indirectly
accessible through location or symbolic input
[Leifer, 1992]. However, systems such as these
suffer from low user acceptability due to their
inflexibility [van der loos et al., 1990b, van der
loos etal., 1990a]. Secondly, from a cost
standpoint, significant effort and cost is
incurred each time a new task must be pro-
grammed, such as in vocational environments,
making such systems non cost-effective. What
is desired is a highly flexible system that does
not require programming per se, that leavesthe
locus of control with the user. The system
should utilize its excellent perceptual,
means-end reasoning and path planning abili-
ties to flexibly and directly carry out the
desires of the user. It is essentia that the user
can carry out this control without having to
worry about the internal representations of the
computer and the perceptual system present in
the assistive robot.



A different approach to command-based robot
operation was proposed by Harwin et a [Har-
win et al., 1986]. A vision system viewed the
robot’s workspace and was programmed to
recognize bar codes that were printed on each
object. By reading the barcodes and calculat-
ing the size and orientation of the barcode, the
robot knew the location and orientation of
every item. This was successful within a lim-
ited and structured environment. This system
did not easily lend itself to a variety of loca
tions and was not able to accommodate the
needs of individuals with disabilities in
unstructured environments. It did, however,
demonstrate the dramatic reduction in machine
intelligence that came by eliminating the need
for the robot to perform object recognition and
language understanding.

1.1.4 Human machine syner gy

At the other extreme of robot control are the
completely autonomous systems that perform
with effectively no user supervision, the long
elusive goal of the Al (Artificial Intelligence),
robotics and machine vision communities.
Unfortunately, this goal seems far from practi-
cal at this point, although many important
incremental advances have been forthcoming
in the past decades. Furthermore, absolute
automation poses a set of problems stemming
from incomplete a priori knowledge about the
environment, hazards, and strategies of explo-
ration, as well as from insufficient sensory
information and the inherent inaccuracy in the
robotic devices [ Sheridan, 1992]

Therefore, continuing in the spirit of supervi-
sory control, what one should strive for is a
synergistic integration of the best abilities of
both “humans’ and “machines’. Humans
excel in creativity, use of heuristics, flexibility
and “common sense’, whereas machines excel
in speed of computation, mechanical power
and ability to persevere. While progress is
being made in robotics in areas such as

machine vision and sensor based control, there
is much work that needs to be done in high
level cognition and planning. We claim that the
symbiosis of the high level cognitive abilities
of the human, such as object recognition, high
level planning, and event driven reactivity with
the native skills of a robot can result in a
human-robot system that will function better
than both traditional robotic assistive systems
and autonomous systems. We describe a sys-
tem that can exploit the low-level machine per-
ceptua and motor skills and excellent Al
planning tools currently achievable, while
allowing the user to concentrate on handling
the problems that they are best suited for,
namely high-level problem solving, object rec-
ognition, error handling and error recovery. By
doing so, the cognitive load on the user is
decreased, the system becomes more flexible,
less fatiguing, and is ultimately a more effec-
tive assistant.

The rest of the paper is organized as follows.
In section 2 we describe the architecture of the
MUSIIC system. In section 3 we discuss the
details of the multimodal interface. In section
4 we discuss pertinent issues in design fol-
lowed by a summary in section 5.

20MUSIIC

In this section we discuss both the implemen-
tation as well as the architecture of the
MUSIIC system.

2.1 System Description

The previous sections lead naturally to a
description of the essential components of the
MUSIIC system. We require a planner that
will interpret and satisfy user intentions. The
planner is built upon object oriented knowl-
edge bases that alow the users to manipulate
objects that are either known or unknown to
the system. A speech input system is needed
for user inputs, and a gesture identification



mechanism is necessary to obtain the user’'s
deictic gesture inputs. An active stereo-vision
system is necessary to provide a snap-shot of
the domain; it returns object shapes, poses and
location information without performing any
object recognition. The vision system is aso
used to identify the focus of the user’s deictic
gesture, returning to the planner information
about either an object or a location. The plan-
ner extracts user intentions from the combined
speech and gesture input. It then develops a
plan for execution on the world model built up

from the a priori information contained in the
knowledge bases, the real-time information
obtained from the vision system, the sensory
information obtained from the robot arm, as
well as information previously extracted from
the user dialog. Prior to execution, the system
allows the user to preview and validate the
planner’s interpretation of user intentionsviaa
3-D graphically simulated environment.

2.1.1 Hardware architecture

Figure 2: Set-up

The configuration of the interface system is
depicted in Figure 2 and the system set-up is
shown in Figure 3.

Figure 3: Physical Set-Up

The backbone computing machine for the
vision interface is an SGI XS-24 IRIS Indigo
computer. Pictures are taken by two CCD color
cameras, model VCP-920 that have light-reso-
lution 450 TV lines with 768X 494 picture ele-
ments. Each camera is equipped with
motorized TV zoom lens, model Computer
M61212MSP. Cameras are connected to the
SGI Galileo graphics board which provides up
to three input channels. In this system we use
two channels with s-video inputs. The Noesis
Visilog-4 software package installed on the
SGI machine is used as an image processing
engine to assist developing the vision interface
software. The speech system used is Dragon
Dictate running on a PC. A six degree of free-
dom robot manipulator, Zebra ZERO, is
employed as the manipulation tool. The plan-



ner and knowledge bases reside on a Sun Sparc
5. The ssimulated environment is run on anther
SGI machine. Communications between the
planner and the sub-systems are supported by
the RPC (Remote Procedure Call) protocol.

2.1.2 Thehigh level planner

We describe an architecture for task planning
which incorporates a novel reactive planning
mechanism where the user is an integral com-
ponent of the planning mechanism. The plan-
ning mechanism is based on an object-oriented
knowledge base incorporating in it the relaxed
assumptions about the world that are essential
for the mechanism to be practical in the real
world and facilitating human-computer inter-
action as a means of providing reactive and re-
planning capabilities.

Reactivity isachieved in two ways. An autono-
mous runtime reactivity is obtained through
sensor fusion. Sensory information from the
vision system and force sensors will be used
by the planner to obtain information for not
only task planning but also to react to environ-
ment changes. Sensor uncertainty and compu-
tational complexity prevents having a totally
sensor based reactive planning system, and
hence user input is necessary for imparting the
necessary reactivity.

Our hierarchical human-machine interface
and object oriented representation allows the
user to interact with the planning system at any
level of the planning hierarchy, from low-level
motion and grasp planning to high-level task
planning of complex tasks such as feeding.
The generic plans and specialized plans are
supplemented by user interaction whenever
incompl ete information precludes the develop-
ment of correct plans by taking over control of
the planning mechanism or providing informa-
tion to the knowledge bases to facilitate the
development of a plan capable of handling a
new or uncertain situation. Furthermore,

incomplete sensory information may be sup-
plemented by user input, enabling the planner
to develop plans from its plan library without
the need for extensive user intervention.

Given this underlying architecture, the system
first determines what the user wants, and then
makes plans to accomplish the task. As a con-
sequence of insufficient information, uncer-
tainty, advent of new information, or failure of
a plan, the system engages in a dialogue with
the user which enables the planner to revise its
plans and actions.

2.1.2.1 The architecture of the planner

The basic architecture in brief is composed of
three knowledge bases. A general knowledge
base of objects (WorldBase), a knowledge
base of objects in the actual domain of opera-
tion (DomainBase), and a knowledge base of
plans (PlanBase). The planner uses the three
knowledge bases and user/sensor provided
feedback, to construct robot plans.

2.1.2.2 WorldBase

Objects are represented in an increasingly spe-
cialized sequence of object classesin an inher-
itance hierarchy. We have devised afour tiered
hierarchy, where object classes become
increasingly specialized from the top level
hierarchy to the bottom level hierarchy (Figure
4). At the top level, we start with a generic
abstract object which causes generic plans to
be developed for objects about which we do
not have exact information. The second level
object classes are classed in terms of general
shapes such as cylindrical, flat and spherical.
This enables the planner to modify plans for
approaching and grasping when more informa-
tion is available about the object. The third
level constitutes general representation of
commonly used everyday objects, such as a
“cup” or a*“can”, and at the bottom level we
end up with actual objects in the domain



whose attributes are fully specified.

Each object, depending on the degree of gener-
alization, has a set of attributes that will assist
the planner in devel oping correct plans. Anini-
tial investigation into the kind of tasks the
robot might be called on to undertake prompts
us to visualize a set of attributes which include
shape, size, dimensions, weight, approach
point, grasp points, constraints and plan frag-
ments. The constraints and plan fragments
attributes need to be described in alittle more
detail to explain the working of our model:

Constraints—Constraints may be placed on
objects which further constrain low level robot
operations such as approaching, grasping, and

moving. For example, we may place a con-
straint on a cup such that the cup’s orientation
cannot be changed during transport to prevent
spillage. However, constraints can be relaxed
and these constraints are dependent on which
action is being invoked upon the object. For
example, in the case of the cup, the constraint
about the fixed orientation is dependent upon
whether the cup is empty of full

Plan Fragments—Another needed compo-
nent are plan fragments that are incorporated
into plans formed by the planner. Certain tasks
may be specific to an object, and plan frag-
ments for those tasks may be associated with
the object in question in order to facilitate cor-
rect planning.

A

N

\f

/
7

@ Leve 1

A//\
@ @Levelz

Level 3

Figure 4 : Object Hierarchy Illustration

O
r@/ \@
T L evet 4

2.1.2.3 DomainBase

In addition to the knowledge base of objects,
the system also maintains a knowledge base of
objects that it sees in the domain, caled the
DomainBase. The objects in the domain con-
tain additional attributes which are instantiated
after objects have been identified by the sys-
tem. Currently, amongst the attributes consid-

ered necessary are location and orientation, as
well as attachment relationships to other
objects and the workspace.

2.1.2.4 Object hierarchy user dialogillustra-
tion

A very simple example of the object hierarchy
is shown below. Prior to interaction with the



user, the system sets up the DomainBase as a
collection of blobs of different sizes and
shapes, with only the position with respect to
the world origin being known. The blob world
image is obtained from the vision system, and
size and location parameters are instantiated in
the DomainBase from the information
obtained by the vision system. We do not do
any object recognition. Based on the premise
that the user is in the planning loop and can
combine inputs from multiple modalities, the
user pointsto ablob and identifiesit to the sys-
tem. For example, she may point to a specific
blob using a co-verba gesture and inform the
system that this is a cup. The system then
updates the attribute slots of the blob with
attributes that it obtains from the WorldBase.
The user may also identify the blob as a spe-
cific object, such as my-cup. In such acase, the
system is aware of a specific object in the
WorldBase which is known as my-cup. The
blob in the DomainBase is replaced by the
exact my-cup that the system knows about, and
the attributes of my-cup in the DomainBase
are instantiated from the WorldBase and
information obtained from the vision system.
It is entirely possible that the user may not
have identified any specific blob, and the sys-
tem then is only aware of the general shape,
and identify the blob at a certain degree of gen-
eralization.

2.1.2.5 PlanBase

The plan knowledge base, PlanBasg, is a col-
lection of STRIPS-like plans [Sacerdoti, 1975,
Sacerdoti, 1977], and the planner is based on a
modified STRIPS-like planning mechanism.
The main difference between conventional
STRIPS-like planning and our proposed sys-
tem is that we take full advantage of the under-
lying object oriented representation of the
domain objects, which drives the planning
mechanism. Plans in this model are considered
as general templates of actions, where plan
parameters are instantiated from both the

WorldBase and the DomainBase during the
planning process. For example, the constraints
slot for a Move action might contain the slot
Object-constraints. This implies that this slot
parameter is going to be filled up from the con-
straints field of the object on which the action
is being invoked. In the case of the cup exam-
ple previoudly illustrated, the constraint that
the cup must be maintained in a certain orien-
tation is used to instantiate the constraint slot
of the Move action. The constraints instanti-
ated from the object in question are added to
the set of constraints already present. Some-
times, some of the constraints obtained from
the objects themselves may be in direct contra-
diction to constraints aready present in the
action being invoked. When that happens, the
constraints obtained from the object override
default constraints in the action body.

2.1.2.6 Handling exceptions

Another way in which the object oriented para-
digm has extended the classical STRIPS plan-
ning mechanism is described here. As
mentioned previoudly, the body of an action
may contain further subactions into which the
actions may be decomposed. This facilitates
hierarchical planning, one of the essential fea
tures of a planning system.

However, certain tasks that can be handled
generally for most objects may not be applica-
ble to certain objects in the real world. Sup-
pose we have an appliance that is used oftenin
the domain of the user. The instrument has a
peculiar shape and must be picked up from a
specific point. To approach the grasp-point, it
may not be possible to just ssimply specify a
certain approach point and assume that the
robotic arm will then be able to pick up that
appliance. The approach path may be convo-
luted and hence there must be some way to
specify such an atypical case in our planning
system. This is done by the use of the plan-
fragment associated with an object. In a man-



ner similar to the way action slots are filled,
depending on the object on which the actions
are invoked, subaction dlots are also filled, if
so specified, from the object’s plan-fragments
dot.

Thus we see that this integration of knowledge
base planning with an object oriented approach
allows us to use general plans whenever we
can. Additionally, this method will allow us to
develop plans for specific objects which are
peculiar to the domain without the need to per-
form computationally expensive operations.
The object abstraction hierarchy allows us to
abstract out the general features of an action
and invoke them on objects about which the
knowledge bases might not have any informa-
tion. It also allows us to view an action as a
single template that is applicable to many
kinds of objects instead of as a set of actions,
each applicable to only one specific object.

2.1.3Vision

For our multimodal system, the vision require-
ment is to provide the knowledge based plan-
ning system with parameterized shape and
pose information of the objects in the immedi-
ate environment. This information can then be
used to fill dots in the object oriented repre-
sentation and support both the system planning
and simulation activities. The vision process-
ing proceeds in three phases: extraction of
highly precise 3-D point information using a
calibrated line-based stereo matching algo-
rithm, segmentation of the point sets into
object-based sets, and non-linear minimization
to fit parameterized shapes to respective
objects in the scene. A feature-based matching
algorithm is used for this application. To
reduce the false extraction rate a high intensity
structured-light source with parallel stripes is
employed in this design. The distorted light
patterns in the images can be easily extracted
and processed. To recover the 3D contour of
the objects the vision system needs to find the

correspondence of the distorted patternsin two
images. We have adopted the straight line pat-
tern since it naturally incorporates the figural
continuity constraint [Chai & Tsai, 1993]. A
line-segment pair-match scheme is developed
based on the geometric characteristics of the
features obtained from the images.

Images are taken by two CCD cameras. The
light source is generated by a dlide projector in
a form of light-stripes or grid. Existing stereo
vision techniques for depth extraction are clas-
sified into several categories:

» full scale nonlinear optimization method,
* two plane method
* linear least-squares method [Hall &

Tio, 1982]

The linear least-squares method is adopted in
this project [Kazi etad. 1995a Kazi
et al., 1995h].

2.1.3.1 Calibration

Before the vision system can be used to extract
points from the stereo image pairs, a precise
calibration must be achieved to ensure that the
disparity measurements resulting from the
edge matching process can be triangulated to
yield the true three-dimensional depth.

2.1.3.2 Line-segment pair matching process

The objective of stereo vision isto recover 3D
information about the objects in the work envi-
ronment using images taken from different
viewpoints. The most essential and most diffi-
cult procedure in stereo vision is feature-
matching. The purpose of the match processis
to find the correspondence among the features
extracted from two images. The difficulty of
image match problem stems from factors such
asimage variations due to different perspective
projections, occluded features and the source
of lighting. Researchers in this field have been



developing various algorithms in the past two
decades. Basicaly, these algorithms can be
classified into two maor categories. area
based (intensity level as the feature) and fea-
ture-based (semantic features with specific
gpatial  geometry) techniques [Barnard &
Fischer, 1984]. Early representative works
[Barnard & Thompson, 1980, Medioni &
Nevatia, 1984, Price, 1986] used the relaxation
labeling technique to solve the stereo image
matching problem. More recent developments
incorporating structural information between
image entities in addition to entity properties
solve the correspondence problem [Boyer &
Kak, 1989, Horaud & Skordas, 1989, Mat-
suyama et al., 1984]. It should be noted that
there is no currently unified approach to the
stereo correspondence problem; it is very
much application dependent. Details of both
the calibration and line-segment pair matching
schemaare given in [Kazi et a., 1995b].

2.1.3.3 Segmentation and shape fitting

The purpose of the shape extraction system is
to derive a set of shapes from a large number
of point-wise measurements on the surfaces of
the different objects in the scene that were
derived by the stereo matching algorithm.
Numerous representations are currently used
for shape representations in both the CAD and
vision communities, such as spline surfaces,
generalized cones and superquadrics. Super-
guadrics are a superset of the class of elip-
soids which can represent and approximate
many shapes from spheres to cubes and cylin-
ders that occur in man-made environments (in
fact, superquadrics were originated by the
Danish designer Piet Hein.) [Barr, 1981].
Superquadrics provide two major advantages:
awell developed mathematical foundation for
their recovery from sets of range points
[Bajcsy & Solina, 1987], and a concise shape
description appropriate for planning, graphi-
ca display, and manipulation activities that
occur in a planner and a graphically simulated

world.

The shape extraction process consists of
thresholding, segmentation and shape fitting of
each respective point group. Since the height
of the surface of support of the objects can be
known a-priori, a threshold height may be set
for the purpose of foreground-background seg-
mentation. Once the thresholding is complete,
a point-set clustering is performed on the sin-
gle set of points that have been labelled as
foreground points since there may be multiple
objectsin the scene. A nearest-neighbor metric
is used to bottom-up cluster the point-set into
subsets of connected-components according to
a scaled Euclidean distance metric. The scal-
ing alows for selectable merging distance
thresholds in each of the orthogonal directions.
Each resulting connected component point-
subset then corresponds to an object in the
scene.

Once the individual point sets have been clus-
tered, the shape fitting process may be run on
each individual point-set. The shape fitting
process computes the shape parameters which
control the shape, size and location of each
superquadric shape. We use a non-linear mini-
mi zation technique [Bajcsy & Solina, 1987] to
rapidly determine the set of shape parameters
that best fit the raw 3-D points measured. The
resulting parameters then describe the posi-
tions, orientations and shapes of each of the
different objects in the environment so that the
planning and simulation systems may exploit
the resulting shape and position representa-
tions [Beitler et a., 1995b]. Figure 5 showsthe
raw data, which is then segmented and fitted
resulting in the approximation superquadric
illustrated in Figure 6.

2.1.4 Simulated environment

We are developing a simulation environment



Figure 5: Recovered 3-D Points from Struc-
tured Light Stereo Line Matching

that will allow us to investigate, in a low risk
fashion, the use of the multiple modalities of
the user to control a rehabilitation robot. The
type of simulation we are using has been
referred to as a “fish-tank” environment, in
which the individual feelsthat he is on the out-
side looking in through the side of a fish-tank
(monitor screen) [Ware & Jessome, 1988].
This simulation models not only the robot and
the domain but also the interplay between user
intentions and the robot’s perception of these
intentions. This simulation mechanism has
been developed using JACK [Badler
et a., 1993].

A multimodal control system that can extract
the embodied meaning of the numerous modal
inputs and can properly respond to directives
from a user depends heavily on having an
understanding of the user’s perception of the
depth, distance, orientation and configuration
of objectsin the operating domain. It isimpor-
tant to note that our system does not require
the user to provide information about the
depth, distance, orientation and configuration
of objects, but a mutual understanding of the
user’s perception of these features, and of the
planning system’s intentions is necessary to
insure that tasks are carried out as the user
intended. An important objective of the simu-
lated multimodal environment is to allow our

Figure 6: Point Segmentation and Result-
ing Object Shape Fitting

research team to rapidly implement and exper-
iment with different methods of interpreting
the discourse and gesture information. The
simulated environment will also allow us to
experiment with different techniques for com-
bining the results of gesture and speech to
extract their joint meaning [Beitler
et a., 1995a]. The facets of multimodal con-
trol that we hope to better understand through
the simulated multimodal environment are:

e User perception of object location and ori-
entation

» User methods of interacting with objects
and the robot

» Proper interpretation of the user’s speech
and gestural inputs

* Feedback about the multimodal control
system’s interpretation of the user’s inten-
tions

* Determination of alevel of automation that
allows the user the best control and flexi-
bility

» User'sinsightsinto the system’s possibly
incomplete or erroneous scene representa-
tion

* Plan preview and error replay

An additional issue which the simulated envi-
ronment will help to address is user safety.
When the user commands the multimodal con-



trol system, the system is expected to complete
that task without injuring the user or damaging
the objects it is manipulating. To provide feed-
back to the user about the plans of the system,
the ssimulated environment will be incorpo-
rated into the multimodal control system dur-
ing its actual operation. The simulated
environment will inform the user of the sys-
tem’s plans and interpretations of the world by
showing a preview of what the system intends
to do. Using the simulated environment to
show a preview is very important because
when the user entrusts the multimodal control
system with a task, the user is “trusting” that
the task will be performed correctly. Every
time the user issues acommand the user is also
taking a “risk” that the system can do the job
correctly [Foner, 1993]. Providing the user
with a visual preview of the intention of the
multimodal control system will effectively
strengthen the “trust” between the user and the
multimodal control system.

Both the MUSIIC system and the user need the
ability to be able to communicate and under-
stand each other. The simulated environment
will help increase the mutual intelligibility of
the interaction process by allowing the system
to make it's own intention and knowledge
apparent to the user, while also giving the user
means of critiquing the plans devel oped auton-
omousdly by the planner.

3.0 The multimodal interface

Researchers have proposed a number of sys-
tems which investigate aternate modes of
human-computer interaction in addition to
speech and vision based ones. Work has been
carried out in using gestures and hand pointing
as a mode of man-machine interface. In some
systems, researchers have required the users to
use hand gloves [Cipolla et a., 1992, Fukim-
oto et a., 1992], while others require calibra-
tion for each individuals hand shapes and
gestures [Wiemer &  Ganapathy, 1989].

Cipollaet al. report preliminary work on ages-
ture-based interface for robot control [Cipolla
et a., 1992]. Their system requires no physical
contact with the operator, but uses un-cali-
brated stereo vision with active contours to
track the position and pointing direction of a
hand. Pook describes a deictic gesture based
tele-assistance system for direct control of a
telerobot, although the system lacks a percep-
tual component [Pook, 1994]. Funda et al.
describe a teleprogramming approach which
extracts user intentions from interaction with a
virtual model of a remote environment, but
their system requires an a priori 3-D model of
the remote scene [Funda et al., 1992].

Work is also being done in attempting to
extend this concept by using multiple modes of
human-machine interfacing. We previously
discussed the work of Bolt, Cannon and Paul
in extending the metaphor of control of arobot
into multiple modes. MUSIIC extends the
combined deictic gesture and spoken word of
Bolt to true 3-D environments manipulated by
a robot. The combination of spoken language
along with pointing performs a critical disam-
biguation function. It binds the spoken words
in terms of nouns and actions to a locus in the
physical workspace. The gesture control and
the spoken input are used to make a general
purpose object recognition module unneces-
sary. Instead, 3-D shape information is aug-
mented by the user’s spoken word which may
also invoke the appropriate inheritance of
object properties using the adopted hierarchi-
cal object-oriented representation scheme.

In the introduction we argued how using a
multimodal interface to combine input evi-
dence from a user dialogue mitigates the
requirements for perceptual and planning sys-
tems to support direct manipulation. In the fol-
lowing sections we discuss the multimodal
control input language.

3.1 Semantic inter pretation for robot con-



trol

In order to devise a practical command input
interpretation mechanism we restricted both
the nature of our speech input as well as our
gesture input.

3.1.1 Speech
Consider the user command:
Put the book on the table

The user is not required to spell out the actual
procedures needed to satisfy her intentions,
however these expressed intentions carry along
with them conditions that may restrict the pro-
cedures that are invoked. While these condi-
tions are not given in advance, they depend on
the context in which the procedures are being
invoked. Satisfaction of the user’s intention
entails the satisfaction of the equally important
associated conditions that were not necessarily
specified directly by the user. Therefore, it
becomes very important to be able to unambig-
uously extract user intentions.

While a fully fledged natural language system
combined with a state-of -the-art gesture recog-
nition mechanism may allow the user more
expressive power, the state-of-the-art in these
two areas makes this a distant goal. At the
same time, the requirements of the domain
places some constraints on the choice of
modalities and the degree of freedom in
expressing user intentions. A multimodal com-
bination of speech and pointing is a better
alternative for use as an assistive device, where
the input speech is arestrictive sub-set of natu-
ral language, a pseudo-natural language
(PNL). We then can apply model-based proce-
dural semantics [Crangle et a., 1988], where
words are interpreted as procedures that oper-
ate on the model of the robot’s physical envi-
ronment. One of the maor questions in
procedural semantics has been the choice of

candidate procedures. Without any constraints,
no procedural account will be preferred over
another and there will not be any shortage of
candidate procedures. The restrictive PNL and
the finite set of manipulatable objects in the
robots domain provide this much needed set of
constraints.

3.1.2 Gesture

Similarly, the needs of users with disabilities
also restrict the choice of gestures. Our gesture
of choice is deictic gesture, which is simply
pointing. In the general case, not only does
pointing have the obvious function of indicat-
ing objects and events in the real world, but it
also plays arole in focusing on events/objects/
actions that may not be objectively present
[McNeill, 1982]. The choice of deictic ges-
tures allows us to use any number of devices,
not restricted to the hand, to identify the user’'s
focus. While our research is investigating the
use of a laser pointer to identify the user’'s
focus of intentions, any device that is able to
indicate a domain object can be used, such as
eye tracking systems, mouse on a control
panel, etc.

3.1.3 Combining speech and gesture

Like natural languages, gestures convey mean-
ings. While their expressiveness is not inferior
to natural languages, the methods used by ges-
tures are fundamentally different from that of
language. Segmentation and linearization to
form a hierarchically structured string of
words that are the essential feature of alinguis-
tic system is based on the fact that language
can vary only along the temporal dimension.
Gestures are different in every way. McNeill
describes a number of ways in which gestures
are different [McNaeill, 1982].

» Gestures are global-synthetic
* Gestures are combinatoric
¢ Gestures have no standards of form



» Gestures have no duality of patterns

These inherent differences makes gesture iden-
tification a very difficult task. However, while
gestures and speech differ from each other in a
number of fundamental ways, they are also
closdly linked in many ways.

» Gestures occur during speech

» Gestures and speech are semantically and
pragmatically co-expressive

» Gestures and speech are synchronous

Restricting our choice of gestures to pointing
gestures only, allows us to use the above prop-
erties to extract user intentions in an unambig-
uous way. We are using pointing gestures to
identify the user’s focus of attention, to indi-
cate either an object or a location. Currently,
speech deictics “that” and “there” are being
used in conjunction with pointing to identify
the user's focus. The interpretation process
must be able to capture the user’s actions in
speech and gesture within the domain of oper-
ation and then attempt to match them to ele-
ments in the system’s domain knowledge base.
We are able to extract the combined user inten-
tion by the use of time-stamps that alow usto
identify which object or which location was
the focus of intention during the user’s deictic
utterances. Each word is tagged with a time
stamp, and the vision system is continuously
scanning the world and storing a history of
points identified by the gesture (in our case the
laser pointer). Depending upon whether the
speech deictic was a “that” or a “there’, the
procedures encoded with each word then
returns either an object or location respec-
tively. The required action is then invoked
upon the returned values.

3.2 Semantics of the multimodal interface
Let us investigate a typica MUSIIC instruc-

tion for the robot: (the words in square brack-
ets imply speech combined with a pointing

gesture)
Put [that] [there].
Analyzing the components:

Put -> TASK specification; Semantic analog to
aVerb in Natural Language

[that]-> Deictic that gets instantiated to an
THING. Anaogous to a Subject in Natural
Language.

[there]-> Deictic that gets instantiated to a
LOCATION.

Mapping the major syntactic components to
their corresponding semantic elements in the
current implementation we obtain:

Put:->TASK
that->THING (TASK-FOCUYS)
there:->LOCATION (DESTINATION)

From a pure speech input, we may have an
instruction such as:

Push slowy the bl ue book
next to the red cup 2 feet
towards ne.

Mapping the major syntactic components of
this sentence to their corresponding semantic
elements, we obtain:

Push:->TASK

slowly:-> TASK-QUALIFIER

the blue book->THING (TASK-FOCUS)
next to the red cup:->LOCATION
(SOURCE)

2 feet:->QUANTITY

towards me:->LOCATION (DESTINA-
TION)

In essence atypical instruction would have the
following semantic format:



TASK
TASK-QUALIFIER
TASK-FOCUS
SOURCE-LOCATION
QUANTITY
DEST-LOCATION

While a complete natural language mechanism
isnot desired at this point, a syntactic structure
that simulates to a certain extent the syntax of
natural language (though restricted) would
make the user feel more comfortable with the
system.

The Semantic Units (SU) being used are:
TASK: The action that isto be performed.

TASK-QUALIFIER: Qualifying how the
action is going to be invoked. Slowly and fast.

TASK-FOCUS: TASK being invoked on this
THING

SOURCE-LOCATION: Of type LOCATION

QUANTITY: Spatia/Temporal duration of the
TASK

DESTINATION-LOCATION: Of
LOCATION

type

THING: Is an SU similar to a noun-phrase in
Natural Language. Elements of THING are,

{ART}L, {ADJ}! and { OBJECT}

ART: a, an, the, that, this

ADJ: Object quantifier. Properties such as
weight, color, size, surface.

OBJECT: The actual manipulatable
object. Both abstract as well as specific.

LOCATION: An SU that maps to an
OBJECT position in the world with respect to

1. Optiona

a certain frame of reference. What is also
needed is a location function (LF) to define
locational relationships such as “in”, “inside”,
“above’, “below” etc. The LF takes the loca-
tiona relationship and a THING and maps it
to aLOCATION.

QUANTITY: A spatial or temporal quantity.
4.0 Discussion

The on-going research on the MUSIIC project,
developing an intuitive multimodal RUI for an
assistive robot, leads to some very interesting
problems that need to be addressed. These
problems stem from many different factors;
from general principles, to problems that stem
from interaction with a three dimensional
unstructured world, to problems that stem
from the fact that the focus is on the use of this
RUI for the control of an assistive robot by
persons with disabilities, which puts further
restrictions on the design.

As with any human-computer system, the
design of the robot user interface
[Leifer, 1992] for an assistive robot is driven
by many of the same considerations as those
that drive the design of graphical two-dimen-
sional user interfaces. However, interfaces for
the control of robots have many requirements
that differ from those interfaces for non-
embedded computers. Many of these stem
from the that fact the robot is an electrome-
chanical system capable of generating large
forces and represents danger, both to objects
and individuals in the task site. This is espe-
cialy true if the operator and the robot are in
close quarters, such as when the robot is used
for assistive feeding.

Since the robot operates in the rea world, it
must satisfy many existing spatial and tempo-
ral constraints in order to successfully carry
out manipulation tasks, prevent errors and
ensure the safety of the operator and other



individuals in the area around her. The notion
of error prevention is especialy important,
since for many actions carried out by robotsin
the world, there is no recourse to an “undo”
action [Leifer, 1992].

Another important principle of user interface
design that is supported by multimodal direct
manipulation interfaces for assistive and teler-
oboticsisthat of ease of action reversal. Thisis
usually available with direct manipulations
GUI's through the universal undo feature,
whereby a user may perform the inverse of the
most recent action. Obviously, with robot user
interfaces, undo may only be feasible in cer-
tain situations. One way around thisisto allow
for preview of the systems actions before they
are actually done, therefore, the user can view
the outcome of an action in a non-destructive
fashion, and prevent it from actually being exe-
cuted by the robot if its outcome is undesir-
able. We support such a capability through a
plan preview mechanism which allows a user
to view a 3-D graphical simulation of the out-
come of her gestural and verbal dialogue with
the system.

We address this very important problem at dif-
ferent levels. The simulation mechanism
described previously is one way in which we
are enabling an “undo” option. The correct
interpretation of user intentions is previewed
before the actua execution. This alows the
user to fine tune instructions if what the system
intends to do isn’t what the user desired.

The planning mechanism is also endowed with
a reactive component, with reactivity being
achieved in two ways. An autonomous runtime
reactivity is obtained through sensor fusion.
Sensory information from the vision system,
force sensors, etc. will be used by the planner
to obtain information for not only task plan-
ning but also to react to environment changes.
However, there are two fundamenta limita-
tions to having a totally sensor based reactive

planning system:

» Uncertainty: Sensors can only return lim-
ited or incomplete information about the
environment. Decisions as to what action
to perform on what object are then made
under conditions of uncertainty leading to
possible failures.

« Computational Limitations: Sensor inter-
action is bounded by computational limita-
tions. The most effective actions are those
which are sufficient for the problem at
hand and require as little effort as possible.

While these factors prevent usfrom having a
totally sensor based reactive system, we over-
come these restrictions by a hierarchical
human-machine interface. The ability to inter-
act with the planning system at any level of the
planning hierarchy, from low level motion and
grasp planning to high-level task planning of
complex tasks allows the user to take over the
planning process and supplement the autono-
mously developed plans.

4.1 Futuredirections

Our system is still very much a work in
progress. In the following subsections, we
describe a set of scenarios that illustrate how
MUSIIC would perform in increasingly diffi-
cult situations as a means of illustrating the
problems and issues that we have addressed.

4.2 Preliminaries

A partial description of the contents of the
knowledge base is provided to facilitate the
description. The system has in its knowledge
base knowledge about top level objects such as
cylinders, cubes, flat objects etc. In its knowl-
edge base exists information about a specific
cup my-cup that the user often uses. The my-
cup object is hence fully instantiated. The
exact dimensions, approach points, grasp
points amongst others are fully specified. This



my-cup object is derived from a more generic
cup object. At this level of generaization,
dimensions are given in terms of ranges and
possible values. Furthermore, a constraint is
placed on the cup object, which states that the
cup must always be kept at a certain orienta-
tion. However, this constraint must be over-rid-
den if the user wants to pour something from
the cup and such constraints can be over-rid-
den by the action being invoked on the object.
Furthermore, in the plan library are top level
actions such as pour, as well as more primitive
actions such as pick, put, and move. Associated
with each object are plan fragments that affect
the actions which can be performed on them.
These are placed in the plan fragment dlots of
the object attributes. Thisis so because not all
plans can be made generic enough. For exam-
ple, in the case of my-cup, the pick operation
for a cup is very specific. The cup must be
grasped by the handle and such an action is
specific to only cup objects. So when the pick
action is invoked on a cup object, the plan
derives a sub-task from the object itself which
determines how exactly the object might be
picked. Given the object oriented nature of
both objects and actions in our domain, thisis
easily facilitated.

4.3 Known objects

In this scenario, the user approaches his/her
own desk where objects are routinely used and
are familiar. These objects may be present in
the knowledge base. The vision system sur-
veys the scene, and computes a three dimen-
siona surface (the orientation of this surface
will be dependent upon the position of the
user's wheelchair). The user pointsto the user's
cup and identifies it as a known object with the
word my-cup. This tells the system about its
weight, its dimensions, and the approach path
to be taken by the robot. The user says move.
The user then points to a surface on the table
and says there. From the information that the
planner derives from my-cup's parent class, the

planner will then calculate the path that needs
to be followed to place my-cup there, while
maintaining the constraint that the cup must be
kept at a certain orientation.

4.4 Unfamiliar environment

The user in awheelchair equipped with a por-
table robot and its vision system approaches a
desk. There are objects on the desk with which
the system is not completely familiar. After the
vision processing, the user points to a cup on
the desk and identifies it as a cup. The system
instantiates its world base from knowledge
about the cup object. Now if the user then
gives the same instruction as in the previous
illustration, the planner would be able to plan
the correct path on which the cup must be
moved.

4.5 Plan adaptation or unknown object

In this modified scenario the user agan
approaches an unfamiliar environment. After
the vision processing, the user points to a mug
and tells the system that this is a mug object.
The system was previously unaware of a mug
object in its knowledge base. If the user wants
to now pick and move the mug she can do one
of four things.

She can load up the knowledge base with
information regarding the mug object so that
the system is able to handle operations on the
mug.

Secondly, she can inform the system that a
mug is a cup-like object and that it derives
from a cylinder type object. When the user
invokes a pick command on the mug, the sys-
tem then generalizes the pick command appli-
cable to a cup object and uses it on the mug.
From the knowledge base the system is able to
infer that a cup must be picked up from the
handle, and the system then attempts to deter-
mine the location of the handle for the mug in



order to ascertain what the approach points and
the grasp points are going to be. Based on the
vision system information and the generaliza-
tion of the pick operation, the system then
instantiates the parameters for the mug object
so that next time it has no need to generalize.
Further attributes for the object, such asweight
etc., can be added during the actual process of
executing the pick operation.

Thirdly, the user simply informs the system
that the object is amug and instructs it to pick
the mug up. This time the system uses infor-
mation gathered from the vision system to
determine a suitable approach point and grasp
point (this may not necessarily be the mug
handle) and initiates the action with the gripper
open wide enough to grasp, and uses the force
sensors in its fingers to grasp the mug. Thisis
an example of the most abstracted example of
apick operation in our plan knowledge base.

Fourthly, the user may direct the movements of
the arm, in a cartesian control method via the
3-D graphically smulated environment. This
would be accomplished by moving a 3-D
crosshair to the desired location and orienta-
tion of the gripper and then commanding the
system to move to the crosshair location.

Fifthly, the user may directly use a joint con-
trol method to manipulate the arm into the
proper orientation to grasp the object. During
all of these operation scenarios the system
instantiates the attributes to the objects for
later reuse.

4.6 Reactivity and user interaction

In a similar scenario as described in the pre-
ceding sub-sections the user instructs the arm
to pick a cup and place it on the table at a cer-
tain location. At the end of the execution
phase, the system ascertains that the cup which
isstill initsgrasp is not quite touching the sur-
face of the table. This determination is made

through sensory information such as force
feedback. When this occurs, the planner then
generates a plan which will allow the cup to be
placed on the table, while continually receiv-
ing force feedback to determine the successful
completion of the task. In a more catastrophic
scenario, the cup falls out of the grasp of the
manipulator. The fact that the cup has fallen
can be detected by the arm, but further execu-
tion of the plan is impossible and the system
then needs to interact with the human user. The
user may then determine whether the goal
needs to be satisfied given the catastrophic
event. In the event that the goal still needs to
be satisfied, the system has to rescan the work
space and the user needs to identify the new
location of the dropped cup so that the planner
can generate a new plan.

5.0 Conclusion

Human intervention as well as an intelligent
planning mechanism are essential features of a
practical telerobotic system. We believe our
multimodal RUI is not only an intuitive inter-
face for interaction with a three-dimensional
unstructured world, but it aso allows the man-
machine synergy that is necessary for practical
manipulation in areal world environment. Our
novel approach of gesture-speech based
human-machine interfacing enables our sys-
tem to make realistic plans in a domain where
we have to deal with uncertainty and incom-
plete information.
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