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Abstract - One of the most challenging problems
in rehabilitation robotics is the design of an efficient
Human-Machine Interface (HMI) allowing the user
with a disability considerable freedom and flexibility.
A multimodal user direction approach combining
command and control methods is a very promising
way to achieve this goal. This multimodal design is
motivated by the idea of minimizing the user’s bur-
den of operating a robot manipulator while utilizing
the user’s intelligence and available mobilities. With
this design, the user with a physical disability simply
uses gesture (pointing with a laser pointer) to indi-
cate a location or a desired object and uses speech to
activate the system. Recognition of the spoken input
is also used to supplant the need for general purpose
object recognition between different objects and to
perform the critical function of disambiguation. The
robot system is designed to operate in an unstruc-
tured environment containing objects that are rea-
sonably predictable. A novel reactive planning
mechanism, of which the user is an active integral
component, in conjunction with a stereo-vision sys-
tem and an object-oriented knowledge base, provides
the robot system with the 3D information of the sur-
rounding world as well as the motion strategies.

Introduction

Researchers in the Rehabilitation Robotics commu-
nity have been developing robot systems which can help
persons with disabilities to gain access to a universe pre-
viously inaccessible to them. One of the most challeng-
ing problems in rehabilitation robotics is the design of
an intuitive and efficient interface between the user and
the manipulator. In general, prototype interfaces have
taken two approaches to achieving effective use by indi-
viduals with disabilities. Many employ commands
which are issued by the user and activate the robot to
perform pre-programmed tasks. Others have sought to
give the user direct control of the manipulator’s motions
[1].

The limitations of a command-based interface were
discussed by Michalowski et al [2]. The effectiveness of
the command systems are limited by the need for a rea-

sonably structured environment and the limited number
of commands. In control-based methods, the physical
limitations of the user require that the input system be
limited to a few degrees of freedom. A conventional 2D
joystick is insufficient to adequately control a manipula-
tor. At the other extreme of robot control are the com-
pletely autonomous systems that perform with
effectively no user supervision, the long elusive goal of
AI, robotics and machine vision communities. Unfortu-
nately, this goal seems far from practical at this point,
although many important incremental advances have
been forthcoming in the past decades. Furthermore,
absolute automation poses a set of problems stemming
from incomplete a-priori knowledge about the environ-
ment, hazards, strategies of exploration, insufficient sen-
sory information, inherent inaccuracy in the robotic
devices and the mode of operation.

Researchers have proposed a number of systems
which investigate alternate modes of human-computer
interaction in addition to speech and vision based ones.
It has long been acknowledged that pointing or deictic
gestures are an important part of human-human commu-
nication and efforts have in turn been carried out in
using gestures and hand pointing as a mode of human-
machine interface [3]. Work is also being done in
attempting to extend this concept by using multiple
modes of human-machine interfacing. The concept of
multimodal interfacing has been discussed extensively
by Richard Bolt of the MIT Media Laboratory [4]. Bolt
introduced the expression “put that there” in describing
his work in optimizing the interface between a user and
a large 2-D graphical display. Cannon at Stanford
extended this concept to three dimensional robot opera-
tion [5]. Cannon’s system has worked quite well in labo-
ratory trials. However, it presents problems when being
considered as a general interface for assistive robotics.
The requirement that the user control two video cameras
acting as a manually operated range-finder makes it less
than desirable for an individual with disabilities.

The concept of multimodal direction of a rehabilita-
tion robot was re-introduced by Foulds in 1993 with a
new strategy[6]. This new strategy extends the com-
bined deictic gesture and spoken word of Bolt to true 3-
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D environments manipulated by a robot. It details an intui-
tive and efficient interface between the user and the manipu-
lator as well as a reactive planning mechanism[8]. Users of
this system use deictic gestures (pointing, achieved by a head
mounted laser pointer) to indicate locations, and spoken
commands to identify objects and specific actions. It com-
bines command and control approaches to provide for user
direction of the assistive robot through the use of multiple
modes of interface which includes voice recognition for
commands and gesture (pointing) for locations (end points).
This strategy provides for rapid operation of the manipulator
by employing the power of predefined commands in con-
junction with the flexibility of user control. Unlike other
control methods there is no need for the user to operate a joy-
stick or any sort of mechanical devices. With a laser pointer
attached to his/her head, the user simply points the laser
beam to an object or a location by positioning his/her head in
an appropriate way. By using a speech system the user is
able to activate different operations of the robot system
based on his/her verbal commands. The combination of spo-
ken language along with deictic gestures performs a critical
disambiguation function. It binds the spoken words in terms
of nouns and actions to a locus in the physical workspace.
The gesture control and the spoken input is used to supplant
the need for a general purpose object recognition module in
the system. Instead, 3-D shape information is augmented by
the user’s spoken word which may also invoke the appropri-
ate object properties from the object-oriented representation.
In this paper the reactive planner and the vision system are
discussed in detail.

SYSTEM DESCRIPTION

The configuration of the interface system is depicted in
Figure 1. The backbone computing machine for the vision
interface is an SGI XS-24 IRIS Indigo computer. Pictures are
taken by two CCD color cameras. Each camera is equipped
with motorized TV zoom lens. Cameras are connected to the
SGI Galileo image acquisition board which provides up to
three input channels. In this system we use two channels
with s-video inputs. The Noesis Visilog-4 software package
(Noesis Vision) installed on the SGI machine is used as an
image processing engine to assist developing the vision
interface software. The speech system used is Dragon Dic-
tate (Dragon Systems, Inc.) running on a PC. A six degree of
freedom robot manipulator, Zebra ZERO (Integrated
Motions, Inc.), is employed as the manipulation tool. The
planner executes on a Sun Sparc 5. To provide the user with
the preview of the plans there is a simulated environment
(for details see [7]) on an IRIS INDIGO ELAN SGI
machine. Communications between the planner and the sub-
systems are supported by RPC (Remote Procedure Call) rou-
tines, which allow the computers to make procedure calls to

each other.

FIGURE 1.System configuration

REACTIVE PLANNER

The planner discussed in this paper proposes a novel
reactive planning approach where the user is an integral
component of the planning mechanism. The planning mech-
anism is based on an object oriented knowledge base incor-
porating in it the relaxed assumptions about the world. There
are assumptions essential for the mechanism to be practical
in the real world and to facilitate human-computer interac-
tion as a means of providing reactive and re-planning capa-
bilities. Reactivity is achieved in two ways. An autonomous
runtime reactivity is obtained through sensor fusion. Sensory
information from the vision system, and force sensors will
be used by the planner to obtain information for not only
task planning but also for reacting to environment changes.
Sensing uncertainty and computational complexity precludes
the feasibility of a totally autonomous sensor-based reactive
planning system, and hence user input is also used to impart
a reactive component to the system. The hierarchical human-
machine interface and object oriented representation allow
the user to interact with the planning system at any level of
the planning hierarchy, from low-level motion and grasp
planning to high-level task planning of complex tasks such
as feeding. Generic plans and specialized plans are supple-
mented by user interaction. Whenever incomplete informa-
tion precludes the development of correct plans, the user can
rectify this by taking over control of the planning mechanism
or providing information to the knowledge bases to facilitate
the development of a plan capable of handling a new or
uncertain situation. Given this underlying architecture, the
system first determines what the user wants, and then makes
plans to accomplish the task. When confronted by insuffi-
cient information, uncertainty, advent of new information, or
failure of a plan, the system engages in a dialogue with the
user which enables the planner to revise its plans and
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actions. The basic architecture in brief is composed of three
knowledge bases: A general knowledge base of objects
(WorldBase), a knowledge base of objects in the actual
domain of operation (DomainBase), and a knowledge base of
plans (PlanBase). The planner uses the three knowledge bases
and user/sensor provided feedback, to construct robot plans.

WorldBase

Objects are represented in an increasingly specialized
sequence of object classes in an inheritance hierarchy. A four
tiered hierarchy has been devised, where object classes
become increasingly specialized from the top level to the bot-
tom of the hierarchy. At the top level, it starts with a generic
abstract object which causes generic plans to be developed for
objects about which there is no exact information. The second
level object classes are classed in terms of general shapes
such as cylindrical, flat, spherical, etc. This enables the plan-
ner to modify approach and grasp plans when more informa-
tion is available for the object. The third level constitutes
general representation of commonly used everyday objects,
such as a “cup” or a “can”, and at the bottom level it ends up
with actual objects in the domain whose attributes are fully
specified.

Each object, depending on the degree of generalization,
has a set of attributes that will assist the planner in developing
correct plans. An initial investigation into the kind of tasks
the robot might be called on to undertake prompts the user to
visualize a set of attributes which include shape, size, dimen-
sions, weight, approach point, grasp points, constraints and
plan fragments. The constraints and plan fragments attributes
need to be described in a little more detail to explain the
working of our model:

Constraints: Constraints may be placed on objects which fur-
ther constrain low-level robot operations such as approaching,
grasping, and moving. For example, the user may place a con-
straint on a cup such that the cup’s orientation cannot be
changed during transport to prevent spillage. However, the
constraints can be relaxed and these constraints are dependent
on which action is being invoked upon the object. For exam-
ple, in the case of the cup, the constraint about the fixed orien-
tation must be over-ridden if the action involves pouring
something out of the cup.

Plan Fragments: Another needed component are the plan
fragments that are incorporated into plans formed by the plan-
ner. Certain tasks may be specific to an object, and those plan
fragments may be associated with the object in question in
order to facilitate correct planning.

DomainBase

In addition to the knowledge base of objects, the system
also maintains a knowledge base of objects that it sees in the
domain, called the DomainBase. The objects in the domain
contain additional attributes which are instantiated after
objects have been identified by the system. Currently,
amongst the attributes considered necessary are location and
orientation, and attachment relationships to other objects and
the workspace.

Object hierarchy illustration: A very simple example of the
object hierarchy is shown below. Prior to interaction with the
user, the system sets up the DomainBase as a collection of
blobs of different sizes and shapes, with only the position
with respect to the world origin being known. The blob world
image is obtained from the vision system and size and loca-
tion parameters are instantiated in the DomainBase from the
information obtained by the vision system. There is no inten-
tion to do any object recognition. Based on the premise that
the user is in the planning loop, the user points to a blob and
identifies it to the system. For example, she may point to a
specific blob and inform the system that this is a cup. The sys-
tem then updates the attribute slots of the blob with attributes
that it obtains from the WorldBase. The user may also iden-
tify the blob as a specific object, such as my-cup; in such a
case, the system is aware of a specific object in the World-
Base which is known as my-cup and the blob in the Domain-
Base is replaced by the exact my-cup that the system knows,
and the attributes of my-cup in the DomainBase are instanti-
ated from the WorldBase and information obtained from the
vision system. It is entirely possible that the user may not
have identified any specific blob, and the system then is only
aware of the general shape, and the blob is identified at a cer-
tain degree of generalization.

PlanBase

The plan knowledge base, PlanBase, is a collection of
STRIPS-like plans,[9] and the planner is based on a modified
STRIPS-like planning mechanism. The main difference
between conventional STRIPS-like planning and the pro-
posed system is that the latter takes full advantage of the
underlying object oriented representation of the domain
objects, which drives the planning mechanism. Plans in this
model are considered as general templates of actions, where
plan parameters are instantiated from both the WorldBase and
the DomainBase during the planning process. For example,
the constraint slot for a move action might contain the slot
object-constraints. This implies that this slot parameter is
going to be filled up from the constraint field of the object on
which the action is being invoked. In the case of the cup
example previously illustrated, the constraint that the cup
must be maintained in a certain orientation is used to instanti-
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ate the constraint slot of the move action. The constraints
instantiated from the object in question are added to the set of
constraints already present. Sometimes, some of the con-
straints obtained from the objects themselves may be in direct
contradiction to constraints already present in the action
being invoked. When that happens, the constraints obtained
from the object override default constraints in the action
body. All plan slots may be instantiated from information
obtained from objects on which they are invoked in a similar
manner.

Handling exceptions: Another way in which the object ori-
ented paradigm has extended the classical STRIPS planning
mechanism is illustrated below. The body of an action may
contain further subactions into which the actions may be
decomposed. This facilitates hierarchical planning, one of the
essential features of a planning system. However, certain
tasks which can be handled generally for most objects may
not be applicable to certain objects in the real world. Suppose
there is an appliance that is used often in the domain of the
user. The instrument has a peculiar shape and must be picked
up from a specific point. To approach the grasp-point, it may
not be possible to just simply specify a certain approach point
and assume that the robotic arm will then be able to pick up
that appliance. The approach path may be convoluted and
hence there must be some way to specify such an atypical
case in our planning system. This is done by the use of the
plan-fragment associated with an object. In a manner similar
to the way action slots are filled depending on the object on
which the actions are invoked, subaction slots are also filled,
if so specified, from the object’s plan-fragment slot.

Plan adaptation

The planner system can adapt to the changing environ-
ment during the course of robot manipulating. Suppose that
there is a mug in the robot working environment. The user
points to the mug and tells the system that this is a mug
object. The system was previously unaware of a mug object in
its knowledge base. If the user wants to now pick and move
the mug she can do one of the following:

She can load up the knowledge base with information
regarding the mug object so that the system is able to handle
operations on the mug.

Secondly, she can inform the system that a mug is a cup-
like object and that it derives from a cylinder type object.
When the user invokes a pick command on the mug, the sys-
tem then generalizes the pick command applicable to a cup
object and uses it on the mug. From the knowledge base the
system is able to infer that a cup must be picked up from the
handle, and the system then attempts to determine the loca-
tion of the handle for the mug in order to ascertain what the

approach points and the grasp points are going to be. Based
on the vision system information and the generalization of the
pick operation, the system then instantiates the parameters for
the mug object so that next time it has no need to generalize.
Further attributes for the object, such as weight, etc., can be
added during the actual process of executing the pick opera-
tion.

Thirdly, the user simply informs the system that the
object is a mug and instructs it to pick the mug up. This time
the system uses information gathered from the vision system
to determine a suitable approach point and grasp point (this
may not necessarily be the mug handle) and initiates the
action with the gripper open wide enough to grasp, and uses
the force sensors in its fingers to grasp the mug. This is an
example of the most abstracted generalization of a pick opera-
tion in our plan knowledge base.

Fourthly, the user may direct the movements of the arm,
in a cartesian control method via the 3-D graphically simu-
lated environment. This would be accomplished by moving a
3-D crosshair to the desired location and orientation of the
gripper and then commanding the system to move to the
crosshair location.

VISION SYSTEM

In our system an obvious task is to acquire the 3D infor-
mation about objects of interest as well as locations with
respect to the robot operating coordinate system in order that
the robot can generate motions accordingly. To accomplish
the task, 3D machine vision technology was chosen to pro-
vide the three-dimensional contours of objects and the three-
dimensional locations of end points. The present paper dis-
cusses the use of stereo vision with the help of a structured
light (light-point, light-stripes) source to acquire the informa-
tion about the immediate robot workspace environment. The
advantages of using structured lighting are two fold. First, it
helps in differentiating object from object and objects from
backgrounds based on structure discontinuity in the images.
Secondly, the stereo matching algorithm based on structured
lighting does not require pixel by pixel operation; thus, it
reduces the computational complexity by an order of magni-
tude compared to correlation-type match algorithms. On
another note, to actively find a single laser beam spot in the
image plane is quite simple. It can be done by just taking one
picture with the laser pointer off and a second picture imme-
diately with the laser pointer on then subtracting the first
image from the second one. An adaptive thresholding scheme
is further developed to achieve the goal of robustness in
extracting the laser spot from the background noise. The
method of coordinate transfer from 2D image space to 3D
robot space is designed so that it does not require any knowl-
edge of camera parameters such as focal length, position and
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orientation. All the necessary parameters of the camera are
embedded in a single transformation matrix that is estimated
through the calibration process. Computing procedures for
the transformation matrix are described in [10].

Line-segment pair match

The objective of stereo vision is to recover 3D informa-
tion about the object in the work environment using images
taken from different viewpoints, that is, one camera moved
from place to place or multiple cameras fixed in different
locations. The most essential and most difficult procedure in
stereo vision is image matching. The purpose of the match
process is to find the correspondence among the features
extracted from two or more images. The difficulty of the
image match problem stems from the factors such as image
variations due to different perspective projection, the source
of lighting, etc. Researchers in this field have been developing
various algorithms in past decades. Basically, these algo-
rithms can be classified into two major categories: area-based
(intensity level as the feature) and feature-based (semantic
features with specific spatial geometry) techniques [11]. Early
representative works can be found in [12,13,14] in which they
use the relaxation labeling technique to solve the stereo image
matching problem. More recent developments incorporate
structure information between image entities in addition to
entity properties to solve the correspondence problem [15, 16,
17]. It should be noted that there is no unified approach to the
stereo correspondence problem. In practice, it is very much
application dependent.

For the gesture-speech based HMI system the require-
ment of the vision system is to provide contour information of
the objects in the immediate environment. A feature-based
matching algorithm is suitable for this application. To reduce
the false extraction rate, a high intensity structured-light
source with a pattern such as parallel stripes is employed in
this design. The distorted light patterns in the images can be
extracted and processed. To recover the 3D contour of the
objects, the vision system needs to find the correspondence of
the distorted patterns in two images. In this paper a straight
line pattern is selected as it naturally incorporates the figural
continuity constraint. A line-segment pair-match scheme is
developed based on the geometric characteristics of the fea-
tures obtained from the images.

Geometric constraints: The stereo cameras are located and
oriented so that there is only a horizontal displacement
between them. The distance from the focal point of one cam-
era to that of the other is called baseline, and denoted as B.
The directions of the optical axes of the two cameras are iden-
tical and perpendicular to the baseline. The B value is usually
small compared with the scene depth. Further, the focal
lengths of the cameras are assumed to be one. Suppose that a

global point  is projected onto one of the two

image planes, say the left image. Then the lines connecting
and the two focal points determine a unique epipolar plane.
The projection of the same point  in the right image must be
on the intersection of the epipolar plane and the right image
plane. The intersection plane and the image plane is called the
epipolar line. Every point on a given epipolar line in one
image must correspond to a point on the corresponding epipo-
lar line in the other image.

Let the perspective projection of the 3D point  onto the

image be . Define the vector disparity between

the two images as , where the

superscripts  and  signify the left and right camera respec-

tively. It can be shown that  and  under

the camera configuration stated above. (In general,
 where  is an integer, in terms of the num-

ber of pixels.) It also can be seen that the magnitude of the
disparity is a function  of the depth of the scene  in

the cameras’ field of view; that is,  and obviously

, where  is the shortest  distance of 3D
points within the cameras’ field of view to the cameras.

As discussed before, stripe structured light is used in this
study. The structured light projector is placed and oriented so
that the results of the perspective projection of the light
stripes in the scene are nearly vertical line segments (with
very small positive and negative angles with respect to the
vertical line for two lines next to each other) in the images.
Express the end points of a light stripe in the global space as

 and  and their perspective projections as  and ,

and  and  in the left and right image respectively. As
defined in [18] the epipolar constraints for line segment

match are  and ; the x-disparity constraints

for line segment matching are  and , where

.

Line segment pair match scheme: The epipolar constraints
and the disparity constraints stated previously are now used to
develop a simple scheme for line segment pair matching in
two images. First, denote the line segment sets in two images

by  and  where  and

 are the number of line segments in the left
and right images. The pair search process takes place between

 and . A total of  pairs are compared.
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For each potential match pair, three penalty measures are

defined: ,where ,

 stands for x_position_penalty,  for

y_position_penalty, and  for length_penalty. For each

,  is normalized to  so that . A

total_penalty function for each pair is defined as

. The weights  are selected

according to the importance of each penalty function in the
search process. Unfortunately, there is no general rule for
picking the values for these coefficients. (In the experiment of
this study, , , and )

The initial set of line segment pairs is determined by
searching for the minimum total_penalty  over all

for each s. It is very likely that the initial set does not satisfy
the rule of at most one to one mapping and the competition
exists for best matching. An adjustment process is thus
needed. We describe the adjustment process by an example.
Suppose pairs ( , ) and ( , ) are the
best mappings for  and  after the matching pro-
cess. By looking at the total_penalty  it is found that
the second best mappings for s=5 and s=6 are ( ,

) and ( , ). Examining the numerical val-
ues (listed as the elements of a  matrix):

the highest penalty value  eliminates the

possibility of accepting the mapping ( , ). Thus,

the probability of mapping ( , ) is enhanced,

which in turn weakens the probability of mapping ( ,

) and enhance the probability of mapping ( ,

).

Post-matching processing and 3D segmentation

The matching process described in the previous section
ends up generating pairs, , of line segments

from , and . That is,  where

“ ” means “match”, . It is clear that the
matching process just simply discards those “extra” segments
found in the larger set of line segments, and unmatchable
lines. Upon finding the matched pairs, the 3D recovery is
straightforward by applying the algorithm stated in [10] to the

matched segments  and . It is important, however, to

note that the length of the matched vector  in the left image

does not necessarily equal that of the vector  in the right

image because of occlusion or optical non-linearity. Methods
have been developed to tackle this problem but in this
research we just use truncation, in other words, only ,

where , expressed
as the number of pixels in the smaller line segment, are used

in 3D computation for the  vector pair. It should be pointed
out that the number of pixels in the image produced by the
video board is 640x486 = 311,040. By projecting light-stripes
onto the objects we only process those bright lines in the
image. The total number of pixels involved in the process is

roughly equal to  which is, in general, much less

than 311,040. For example, if , , then

.

Now, we have the 3D data set , where

, describing the shape of the objects with a series

of 3D line segments, , . For each 3D line seg-

ment, , let , where  are the end

points of . ‘+’ indicates the end having smaller Y value,

and ‘-’ indicates the end having larger Y value. We then apply

the clustering process to the points  with a Euclidean

measure. The clustering process results in segmenting the

 into different groups. The points are also used to

compute the angle of each object with respect to the  axis of
the world coordinate system.

EXPERIMENTS

 The experiments conducted are mainly used to demon-
strate the feasibility of using the Gesture-Speech interface to
enable the user to control a rehabilitation robot manipulator in
picking and placing objects in the multimodal HMI system.
Figure 2 (upper half) shows the scene of two items (one
pocket-handbook and one small box) placed on the table; next
to those two items is the robot manipulator that is not shown
in the picture.

To activate the system, the user issues the following
instructions for the robot: (the words in square brackets imply
speech combined with a pointing gesture)

Put [that] [there].

A brief explanation of the plan follows.

put - A TASK specification; Semantic analog to a Verb in Nat-
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ural Language.

[that]- Deictic that gets instantiated to a THING (a book in this
case). Analogous to a Subject in Natural Language.

[there]- Deictic that gets instantiated to a LOCATION.

Mapping the major syntactic components to their correspond-
ing semantic elements in the current implementation we
obtain:

put:->TASK

that:->THING (TASK-FOCUS)

there:->LOCATION (DESTINATION)

FIGURE 2.Put that there

Another example is ‘drinking’. The task is to pick up the
straw, put the straw into the paper cup, move the cup towards
the user (see Figure 3). The instructions can be

Put this [straw] in this [cup];

move cup [here].

In the first instruction the components are

put-in:->TASK

straw:->THING (TASK-FOCUS)

cup:->LOCATION (DESTINATION)

In the second instruction the location of the cup is already
known so there is no need of a pointing gesture. The compo-
nents again are

move:->TASK

cup:->THING (TASK-FOCUS)

here:->LOCATION (DESTINATION)

FIGURE 3.‘Drinking’ example

CONCLUSIONS

In this paper we have presented a novel human-machine
interface system for persons with physical disabilities to oper-
ate an assistive robot arm. Equipped with vision and speech
technologies, this system incorporates gesture-speech human
actions with a reactive task planning mechanism so that it
maximizes the utilization of human intelligence while it mini-

Light-stripes
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mizes the user’s burden of operating a robot. Our goal is to
achieve a synergistic integration of the best abilities of both
“humans” and “machines”. Humans excel in creativity, use of
heuristics, flexibility and “common sense’, whereas machines
excel in speed of computation, mechanical power and ability
to persevere. While progress is being made in robotics in
areas such as machine vision and sensor based control, there
is much work that needs to be done in high level cognition
and planning. We claim that the symbiosis of the high level
cognitive abilities of the human, such as object recognition,
high level planning, and event driven reactivity, with the
intrinsic skills of a robot can result in a human-robot system
that will function better than both traditional robotic assistive
systems and autonomous systems. We describe a system that
can exploit the low-level machine perceptual and motor skills
and excellent AI planning tools currently achievable, while
allowing the user to concentrate on handling the problems
that they are best suited for, namely high-level problem solv-
ing, object recognition, error handling and error recovery. By
doing so, the cognitive loading of the system is decreased, the
system becomes more flexible, pleasant to use and less fatigu-
ing, and is ultimately a more effective assistant.
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